如何有效运用大数据平台,拓展客户维护和风险管控
当量级庞大、实时传输、格式多样的全量数据通过某种手段得到利用并创造出商业价值,且能够进一步推动商业变革时,大数据就诞生了
利用大数据平台可以获得海量的、非结构化数据,并且利用内存分析、流处理等新兴技术,大幅度提升了对海量数据的处理能力
常见的风险主要包括5种:信用风险,信息科技风险,操作风险,声誉风险,法律风险
海量大数据特征:
一是数据类型方面,除了包括海量的结构化和半结构化的交易数据,还包括海量非结构化数据和交互数据;
二是技术方法方面,核心是从各种类型的数据中快速获取有价值信息的技术及其集成;
三是分析应用方面,重点是采用大数据技术对特定的数据集合进行分析,及时获得有价值的信息。
利用大数据平台实施风险管控分为五大步骤:全面风险视图的建立,客户线上信息识别,信用评分模型建设以及与之匹配的业务策略设计,实时风控技术框架,智能决策与业务应用流程结合。
一个企业,特别是电商类的,如何进行大数据分析
大数据不仅仅意味着数据大,最重要的是对大数据进行分析,只有通过分析才能获取很多智能的、深入的、有价值的信息。下面介绍大数据分析的五个基本方面——
预测性分析能力:数据挖掘可以让分析员更好地理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
数据质量和数据管理:通过标准化的流程和工具对数据进行处理,可以保证一个预先定义好的高质量的分析结果。
可视化分析:不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求,可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
语义引擎:由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析、提取、分析数据,语义引擎需要被设计成能够从“文档”中智能提取信息。
数据挖掘算法:可视化是给人看的,数据挖掘就是给机器看的,集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值,这些算法不仅要处理大数据的量,也要处理大数据的速度。
据我所知多瑞科舆情数据分析站大数据分析还可以。针对单个网站上的海量数据,无遗漏搜集整理归档,并且支持各种图文分析报告;针对微博或网站或微信,活动用户投票和活动用户评论互动信息整理归档,统计分析精准预测制造新数据;针对某个论坛版块数据精准采集,数据归类,出分析报告,准确定位最新市场动态;针对某个网站监测用户的操作爱好,评定最受欢迎功能;针对部分网站,做实时数据抽取,预警支持关注信息的最新扩散情况;针对全网数据支持定向采集,设置关键词搜集数据,也可以划分区域或指定网站搜集数据针对电商网站实时监测评论,归类成文档,支持出报告。
大数据会影响整个社会的发展,主要看是想要利用数据做什么了